The Relationship Between Neurocognitive and Psychosocial Functioning in Major Depressive Disorder: A Systematic Review

Vanessa C. Evans, BSc; Grant L. Iverson, PhD; Lakshmi N. Yatham, MBBS, MBA; and Raymond W. Lam, MD

ABSTRACT

Objective: Neurocognitive deficits are demonstrated in major depressive disorder (MDD) and most likely contribute to the functional impairment experienced by affected individuals. We systematically reviewed the evidence on neurocognitive deficits and their relationship(s) to psychosocial functioning in MDD.

Data Sources: English-language literature was searched in MEDLINE, EMBASE, Science Direct, and PsycInfo databases for the years 1980–October 15, 2013, with the following terms: (depressive disorder or depressive disorder, major) and permutations of (cognitive, neurocognitive, neuropsych*) with (impairment, deficit, performance, test) and (quality of life; functional outcomes; outcome assessment, health care) or (assessment, outcomes; assessment, patient outcomes; outcomes assessment; outcomes assessments, patient).

Study Selection: Inclusion criteria were (1) nongeriatric adults (< 60 years) with a primary diagnosis of MDD by DSM-IV, ICD-9, or ICD-10 criteria; (2) use of neuropsychological tests; and (3) use of a specific measure of social, occupational, or daily functioning. Of 488 articles identified in the initial search, 10 met the inclusion criteria.

Data Extraction: Two independent appraisers assessed eligibility of the studies. Substantial heterogeneity in the samples and methods precluded a quantitative meta-analysis, so we performed a narrative descriptive review.

Results: The included studies employed a variety of neurocognitive tests and assessments of psychosocial functioning. Overall, depressed samples had neurocognitive deficits in various domains that were associated with different measures of psychosocial functioning. However, these findings were constrained by methodological limitations of studies.

Conclusions: The limited evidence base suggests that neurocognitive functioning appears to be broadly associated with functional impairment in individuals with MDD, but the quality of evidence is weak. Further studies to clarify the relationship(s) between neurocognitive and psychosocial functioning in MDD will benefit from larger and more homogeneous samples, prospective designs with multivariate analyses, and use of comprehensive assessments of psychosocial functioning that are validated in depressed populations.

J Clin Psychiatry 2014;75(12):1359–1370

© Copyright 2014 Physicians Postgraduate Press, Inc.

Corresponding author: Raymond W. Lam, MD, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A1 (r.lam@ubc.ca).

Major depressive disorder (MDD) is a leading cause of functional disability worldwide, especially for young and middle-aged adults. Interestingly, psychosocial functioning in individuals with MDD is not always strongly correlated with symptom severity, and functional impairments may persist even when patients are in symptom remission from a major depressive episode. These findings have prompted research into additional causes of functional impairment in patients with MDD, with an aim to develop interventions to improve functioning.

Individuals with MDD usually have cognitive complaints, and neurocognitive deficits are likely to contribute to their functional impairment. Much research has focused on profiling MDD-related neurocognitive impairments, but their prevalence, etiology, and severity are still not well understood. Rather than a consistent profile of neurocognitive impairments, research to date has generated at least some evidence of diminishment or impairment across most domains of cognitive function, including (1) information processing speed, (2) sustained and selective attention, (3) different aspects of learning and memory, and (4) executive functioning. There is also evidence that cognitive deficits may persist even following the remission of a depressive episode.

In other chronic psychiatric illnesses such as schizophrenia and bipolar disorder, neurocognitive impairments have been identified as an important component of the illness and have been shown to predict both clinical and functional outcomes. Poorer neurocognitive functioning is also associated with worse clinical and functional outcomes in late-life depression. The objective of this work was to systematically review studies on neurocognitive deficits and their impact on aspects of psychosocial functioning in working-age adults with MDD.

DATA SOURCES

The English-language literature up to and including October 15, 2013, was searched through the MEDLINE, EMBASE, ScienceDirect, and PsycInfo databases (Figure 1). Three main sets of general and Medical Subject Headings (MeSH) search terms (combined within each set with an OR operator) were combined with an AND operator: depressive disorder/ or depressive disorder, major/; permutations of cognitive, neurocognitive, and neuropsych* with impairment, deficit, performance, and test; and quality of life or functional outcomes or outcome assessment (health care) OR assessment, outcomes OR assessment, patient outcomes OR outcomes assessment OR outcomes assessments, patient. When appropriate, results were limited to articles on human adult populations, with the search terms as major subjects, or with neuropsychological tests as a keyword. Previously identified articles were also reviewed for inclusion. After all relevant publications were collected, their references were searched for additional articles.
Neurocognitive deficits are associated with impairment in psychosocial functioning in individuals with major depressive disorder, although the existing scientific literature on this topic is still limited. Intervention research should focus on effects of treatment in improving both neurocognitive and psychosocial functioning. Clinicians should monitor both psychosocial functioning and cognitive symptoms as important aspects of depression treatment.

Study Selection
Studies were selected for the review if they included the following: (1) subjects meeting validated diagnostic criteria for unipolar MDD (eg, defined according to the DSM-IV, ICD-9, or ICD-10), (2) a nongeriatric adult population (aged < 60 years), (3) an objective measure of neurocognitive functioning (ie, neuropsychological tests), and (4) a specific assessment of psychosocial functioning (eg, social or work functioning scale).

Data Extraction
Two reviewers (V.C.E., R.W.L.) independently examined the studies to determine eligibility, and conflicts were resolved by consensus. Because this study consisted of a review of published, publicly available research data, institutional review board approval was not needed.

RESULTS
The systematic search process is illustrated in Figure 1. The initial database search yielded 488 articles (MEDLINE = 136, EMBASE [1990–current] = 39, ScienceDirect [all years] = 148, PsycINFO [1998–2002] = 157, other = 8). Of those, 32 had titles and/or abstracts that suggested they might be eligible for inclusion in the review; all other articles were clearly off topic, most likely identified in the initial search because of the comprehensive set of search terms. These 32 articles were examined independently by 2 reviewers. Articles were excluded due to a focus on a geriatric population, qualitative reviews, a focus on samples with significant comorbidities or samples without MDD as a primary diagnosis (eg, bipolar disorder, traumatic brain injury), and a lack of assessments of either functional outcomes or objective neurocognitive deficits.

Ten articles met the inclusion criteria. Two of these studies25,26 had been identified and summarized in detail in a previous review of neurocognitive functioning and occupational functioning.27 Because the studies used varied methodologies and different assessments of cognition and psychosocial functioning, we conducted a narrative descriptive review instead of a quantitative meta-analysis.

Sample Characteristics and Assessments
Sample demographic and clinical characteristics, neurocognitive tests, and assessments of functioning for the 10 studies are summarized in Table 1. Patient samples were demographically and clinically heterogeneous. Although most studies excluded participants with neurologic or neurodegenerative illness (eg, dementia), history of moderate to severe traumatic brain injury, severe learning disabilities, psychotic disorders, and other conditions that could affect neurocognitive functioning, they varied considerably in whether they included, excluded, or controlled for other psychiatric and general medical conditions and other clinical factors that could affect both neurocognition and psychosocial functioning, such as psychotic symptoms and medications. Patient samples also varied considerably in depression severity, ranging from outpatients in remission28 to hospitalized patients awaiting electroconvulsive therapy,25 although most samples consisted of outpatients with MDD who were at least moderately depressed. Two studies examined treatment-resistant samples.29,30 Five studies included a comparison sample of matched healthy subjects or a normative population sample.25,26,28,31,32

Studies used a variety of neuropsychological tests and test batteries to assess cognitive functioning (Table 1). To facilitate comparisons across studies, we focused on...
Table 1. Sample Characteristics and Assessments for Included Studies

<table>
<thead>
<tr>
<th>Study (country)</th>
<th>Patients/Healthy Subjects (if applicable), N</th>
<th>Age, Range, Mean (SD), y</th>
<th>Employment Status</th>
<th>Depression Diagnosis</th>
<th>Depression Severity, Mean (SD)</th>
<th>No. of Depressive Episodes, Mean (SD)</th>
<th>Psychiatric Comorbidity</th>
<th>Psychosis</th>
<th>Medication Status</th>
<th>Neuropsychological Tests</th>
<th>Assessments of Functioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional design</td>
<td></td>
</tr>
<tr>
<td>Baune et al25 (Australia)</td>
<td>70 Outpatients</td>
<td>20–77; Current MDD: 46.0 (12.1)</td>
<td>Not reported</td>
<td>MDD by DSM-IV criteria (MINI)</td>
<td>HDRS-17 Current MDD, 18.0 (5.9)</td>
<td>Not reported</td>
<td>Yes</td>
<td>Current MDD: 69% Past MDD: 48% Across all MDD subjects GAD: 49%, Dysthymia: 41%, Panic disorder: 29%, Alcohol dependence, 7%</td>
<td>Excluded</td>
<td>Current MDD: 85% taking medications SSRI: 42%, SNRI: 27%, Other antidepressants, 15%</td>
<td>Repeatability Battery for the Assessment of Neurocognitive Status,17 including Attention: Digit Span, Coding Tests Immediate memory: List Learning, Story Memory Tests Delayed memory: List Learning Free Recall, List Learning Recognition, Story Memory Free Recall, Figure Free Recall Tests Visuospatial/constructional: Figure Copy, Line Orientation Tests Verbal fluency: Language; Picture Naming, Semantic Fluency Tests</td>
</tr>
<tr>
<td>Godard et al26 (Canada)</td>
<td>16 Outpatients</td>
<td>18–65, 49.5 (12.3)</td>
<td>Not reported</td>
<td>MDD by DSM-IV criteria (MINI)</td>
<td>MADRS, 28.5 (5.1) HDRS-29, 31.2 (5.1)</td>
<td>Not reported</td>
<td>Yes</td>
<td>Personality disorders, 38% Anxiety disorders, 19% Substance use disorders, 6% Other, 12%</td>
<td>3/16 (19%) had either current or past psychotic symptoms</td>
<td>69% Taking medications Antidepressants, 25%, Benzodiazepines, 44%, Mood stabilizers, 2.5%, Antipsychotics, 19%</td>
<td>CogItEx II17 and Delis-Kaplan Executive Function System (D-KEFS)18 test batteries and others, including Executive function: Sequential Memorization Test, Verbal Fluency Test, Design Fluency Test, Tower Test, Twenty Questions Test Attention/Processing speed: Simple Reaction Time Test, Divided Attention Test, Conditional Reaction Time Test, Continuous Performance Test (CPT), Color-Word Interference Test Verbal learning and memory: California Verbal Learning Test (CVLT) Visuospatial: Block Design Test</td>
</tr>
<tr>
<td>Gupta et al30 (Canada)</td>
<td>33 Outpatients</td>
<td>18–74, 45.8 (13.0)</td>
<td>Employed: 30% Unemployed: 70%</td>
<td>MDD by DSM-IV criteria (MINI), with treatment resistance1</td>
<td>MADRS, 25.1 (8.1)</td>
<td>Not reported</td>
<td>Yes</td>
<td>Anxiety disorders, 33% Alcohol dependence/abuse, 6% Other substance dependence/abuse, 6% Borderline personality disorder, 6%</td>
<td>2/33 (6%) had past psychotic symptoms</td>
<td>Not reported, but sample most likely taking medications due to treatment-resistant depression and comorbidities</td>
<td>Executive function: Stroop Color-Word Test (response inhibition), Trail-Making Test (TMT) Part B Attention: CPT-Identiﬁcal Pairs Version Processing speed: Symbol Coding Task, TMT Part A Verbal learning/working memory: Hopkins Verbal Learning Test, Letter Number Sequencing Test (LNS) Verbal ﬂuency: Controlled Oral Word Association Test (COWAT) and Animal Naming Tests Composite score (NCS): Equally weighted average of all domains’ scores</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study (country)</th>
<th>Patients/Healthy Subjects (if applicable), N</th>
<th>Age, Range, Mean (SD), y</th>
<th>Employment Status</th>
<th>Depression Diagnosis</th>
<th>Depression Severity, Mean (SD)</th>
<th>No. of Depressive Episodes, Mean (SD)</th>
<th>Psychiatric Comorbidity</th>
<th>Psychosis</th>
<th>Medication Status</th>
<th>Neurocognitive Tests</th>
<th>Assessments of Functioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCall and Dunn (United States)</td>
<td>77 Inpatients awaiting electroconvulsive therapy</td>
<td>56.5 (15.8)</td>
<td>Not reported; all were inpatients and thus not working</td>
<td>MDD by DSM-IV criteria (SCID), 81% with treatment resistance</td>
<td>HDRS-21, 28.9 (5.0)</td>
<td>2.6 (1.7)</td>
<td>Not reported</td>
<td>12/77 (16%) had current psychotic symptoms</td>
<td>Not reported, but all were inpatients and thus most likely treated with medications</td>
<td>Global cognition: Mini-Mental Status Examination</td>
<td>Personal Self-Maintenance Scale (measure of ADL), IADL, Daily Living and Role Functioning, Relation to Self and Others</td>
</tr>
<tr>
<td>Naismith et al (Australia)</td>
<td>21 Outpatients 21 Age-, sex-, and education-matched healthy subjects</td>
<td>25–69, 53.9 (11.8)</td>
<td>Not reported</td>
<td>MDD by DSM-IV criteria (MINI)</td>
<td>HDRS-17, 21.7 (4.4)</td>
<td>3.6 (3.3)</td>
<td>Not reported</td>
<td>Excluded</td>
<td>90% Taking medications: SSRI, 38%; SNRI, 33%; Lithium, 14%; TCA, 10%; MAOI, 5%; Other antidepressant, 5%; Atypical antipsychotic, 5%</td>
<td>Executive functioning: TMT Part B, Stroop Color Word Test, computerized Tower of London test, Processing/g/psychomotor speed: Choice Reaction Time Test and TMT Part A Initial learning: logical memory subtest of Wechsler Memory Scale- Revised (WMS-R), RAVLT Memory retention: RAVLT Premorbid functioning: National Adult Reading Test (NART)</td>
<td>Medical Outcomes Study Health Survey Short Form, 12 item, Brief Disability Questionnaire (BDQ)</td>
</tr>
<tr>
<td>Shimizu et al (Japan)</td>
<td>43 Outpatients in remission 43 Age-and education-matched healthy subjects</td>
<td>20–59, 38.3 (8.9)</td>
<td>All patients on long-term disability from work</td>
<td>MDD by DSM-IV criteria (MINI), currently in remission</td>
<td>HDRS-17, 2.9 (2.2)</td>
<td>2.3 (1.4)</td>
<td>Excluded</td>
<td>93% Taking medications; specific medications not reported</td>
<td>Executive function: Wechsler Card Sorting Test (WCST), TMT Attention/processing speed: QT/omissions/omissions and response time Immediate and delayed memory: Auditory Verbal Learning Test (AVLT) Verbal fluency: Word Fluency Test</td>
<td>SF-36</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (continued). Sample Characteristics and Assessments for Included Studies
Table 1 (continued). Sample Characteristics and Assessments for Included Studies

<table>
<thead>
<tr>
<th>Study (country)</th>
<th>Patients/Healthy Subjects (if applicable), N</th>
<th>Age, Range, Mean (SD), y</th>
<th>Employment Status</th>
<th>Depression Diagnosis</th>
<th>Depression Severity, Mean (SD)</th>
<th>No. of Depressive Episodes, Mean (SD)</th>
<th>Psychiatric Comorbidity</th>
<th>Psychosis</th>
<th>Medication Status</th>
<th>Neurocognitive Tests</th>
<th>Assessments of Functioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective design</td>
<td></td>
</tr>
<tr>
<td>Jaeger et al45 (United States)</td>
<td>48 Inpatients 18–59, 3.6 (12.7)</td>
<td></td>
<td>Not reported; all were inpatients at initial assessment and thus not working</td>
<td>MDD by DSM-IV criteria (SCID)</td>
<td>HDRS-17 At initial assessment, 6.5 (7.1) At 6-month follow-up, 11.7 (6.6)</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Executive functioning: WCST perseveration errors, Ruff Figural Fluency Test unique designs, COWAT correct, Animal naming</td>
</tr>
<tr>
<td></td>
<td>Motor speed: Finger tap preferred, nonpreferred, Grooved Peg preferred, nonpreferred</td>
</tr>
<tr>
<td></td>
<td>Verbal/visual learning/memory: WMS-R Verbal paired I, II, Visual Paced I, II Working memory: D2 Fluctuation, WAIS-R Digit Span (Forward), LNS Total Correct, LNS Longest Span, WAIS-R Arithmetic (Raw), WAIS Digit Span (Back), WAIS-R Logical/Memory Verbal fluency: COWAT correct, Animal naming Nonverbal functioning: WAIS-R Block Design (Raw), WAIS-R Picture Comprehension (Raw), WAIS-R Similarities (Raw) Verbal knowledge: WAIS-R Vocabulary (Raw), WAIS-R Comprehension (Raw), WAIS-R Similarities (Raw)</td>
</tr>
<tr>
<td></td>
<td>Multidimensional Scale of Independent Functioning (MSIF)46</td>
</tr>
<tr>
<td>Withall et al47 (Australia)</td>
<td>48 Inpatients at initial assessment 20–60, 38.0 (10.6)</td>
<td></td>
<td></td>
<td>MDD by DSM-IV criteria</td>
<td>HDRS-17 At initial assessment, 28.3 (5.7) At 3-month follow-up, 10.7 (6.0)</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Executive functioning: WCST Digit-Span subtest (Forward and Backward), Stroop Color Word Test, Modified Six Elements Test Attention: WMS-R Digit-Span subtest Motor speed: Computerized Simple Reaction Time test Verbal fluency: COWAT Pseudomobility: NART</td>
</tr>
<tr>
<td></td>
<td>Social and Occupational Functioning Assessment Scale48, Employment status</td>
</tr>
</tbody>
</table>

(continued)
Table 1 (continued). Sample Characteristics and Assessments for Included Studies

<table>
<thead>
<tr>
<th>Study (country)</th>
<th>Patients/Healthy Subjects (if applicable), N</th>
<th>Age, Range, Mean (SD), y</th>
<th>Employment Status</th>
<th>Depression Diagnosis</th>
<th>Depression Severity, Mean (SD)</th>
<th>No. of Depressive Episodes, Mean (SD)</th>
<th>Psychiatric Comorbidity</th>
<th>Psychosis</th>
<th>Medication Status</th>
<th>Neurocognitive Tests</th>
<th>Assessments of Functioningb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airaksinen et al49 (Sweden)</td>
<td>76 Currently depressed persons selected from a sample of 125 depressed participants in a population-based longitudinal study on mental health</td>
<td>20–64 At 3-year follow-up: Still depressed, 46.0 (10.9) Recovered, 45.4 (11.8)</td>
<td>Not reported</td>
<td>MDD, dysthymic disorder, or mixed anxiety depressive disorder by DSM-IV criteria</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Only anxiety symptoms reported</td>
<td>At initial assessment: Still depressed, 61% Recovered, 69% At 3-y follow-up: Still depressed, 63% Recovered, 6%</td>
<td>Not reported</td>
<td>At initial assessment, 52% taking medications: Depressed, 32% Recovered, 20% At 3-y follow-up, 72% taking medications: Depressed, 46% Recovered, 26%</td>
<td>Delayed and verbal memory: free recall, cued recall, utilization of retrieval support</td>
</tr>
<tr>
<td>Godard et al31 (Canada)</td>
<td>13 Outpatients30 Age- and education-matched healthy subjects</td>
<td>49.3 (12.0) Not reported</td>
<td>MDD by DSM-IV criteria (MINI)</td>
<td>MDRS At initial assessment, 26.5 (7.3) At 12-mo follow-up, 13.3 (9.4)</td>
<td>2.2 (1.5) Yes Personality disorders, 3% Anxiety disorders, 15% Substance use disorders, 8% Other, 14%</td>
<td>1/13 (8%) had current psychotic symptoms: 1/13 (8%) had past psychotic symptoms</td>
<td>Not reported</td>
<td>At initial assessment: Antidepressants, 100% Benzodiazepines, 92% Mood stabilizers, 54% Antipsychotics, 54% Hypnotics/sedatives, 8% At 12-mo follow-up: Not reported</td>
<td>CogitEx II and D-KEFS test batteries and others, including Executive function/verbal fluency: Sequential Memorization Test, Verbal Fluency Test, Design Fluency Test, Tower Test, Twenty Questions Test Attention/processing speed: Simple Reaction Time Test, Divided Attention Test, Conditional Reaction Time Test, Choice Reaction Time Test, CPT, Color-Word Interference Test Verbal learning and memory: CVLT Visual functions: Block Design Test General intelligence: WISC Vocabulary and Matrix Reasoning LIFE-RIFT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aFor patient groups only.
bAssessments of functioning are described in greater detail in Table 2.
cPatients had at least Stage I treatment resistance according to criteria defined by Thase and Rush.50
dTreatment resistance was assessed by a modified rating scale.51

Abbreviations: ECT = electroconvulsive therapy, HDRS-17 = 17-item Hamilton Depression Rating Scale, HDRS-21 = 21-item Hamilton Depression Rating Scale, HDRS-29 = 29-item Hamilton Depression Rating Scale, MADS = Montgomery-Asberg Depression Rating Scale, MDD = major depressive disorder, MINI = Mini-International Neuropsychiatric Interview, NCS = Neurocognitive Composite Score, SCID = Structured Clinical Interview for DSM-IV, SNRI = serotonin-norepinephrine reuptake inhibitor, SSRI = selective serotonin reuptake inhibitor, TCA = tricyclic antidepressant.
patients’ performance in the cognitive domains purportedly assessed by the neurocognitive tests in each study. These included attention, psychomotor speed, processing speed, verbal and visual learning, immediate and delayed memory, visuospatial abilities, verbal/ideational fluency, executive functioning, and global cognition.

Studies also employed a variety of self-report, clinician-rated, and laboratory assessments to assess functioning and disability (summarized in Table 2). The majority of assessments were self-report questionnaires and interview-based rating scales; 2 studies25,28,32 also examined employment status. Three studies25,28,32 used versions of the Medical Outcomes Study Health Survey Short-Form, 36 item (SF-36)34 and 12-item (SF-12)43 versions, which are considered measures of health-related quality of life rather than specific measures of social or occupational function. Two studies25,29 used assessments of Activities of Daily Living (ADL) (the Katz Index of Activities of Daily Living35 and the Personal Self-Maintenance Scale [PSMS]36) and Instrumental Activities of Daily Living (IADL).36 which are measures designed for patient populations and conditions other than MDD. Only 1 study30 used controlled laboratory tasks as well as clinician-rated (interview-based) assessments of functioning, thereby assessing both functional competence (“what one can do”) in a controlled setting and functional performance (“what one actually does”) in everyday life.

Is Neuropsychological Performance Related to Psychosocial Functioning in MDD?

Studies used various methodological and statistical approaches to explore the relationship between neurocognitive and functional assessments (summarized in Table 3). Two studies26,45 examined only correlational relationships, and 5 studies28–30,32,47 used multivariate regression analyses. Two prospective studies31,49 did not assess this relationship directly, but instead conducted separate analyses to examine how each independently changed over time.

Despite their demographic, clinical, and methodological heterogeneity, all studies found that depressed patients were impaired in at least 1 cognitive domain, and all 8 studies that directly assessed the relationship between cognition and psychosocial functioning found that performance in at least 1 cognitive domain (most commonly executive function, attention, psychomotor speed, and certain aspects of memory) was associated with a functional outcome (Table 3). In cross-sectional studies, cognitive domains associated with psychosocial functioning were executive function and attention,25,26,30 psychomotor and processing speed,26,32 and verbal and visual memory, both immediate and delayed.25,26,28 In the study using laboratory performance testing for psychosocial functioning,30 sustained attention was associated with both social competence (assessed with the Social Skills Performance Assessment40) and recreational functioning (assessed with the Longitudinal Interval Follow-Up Evaluation—Range of Impaired Functioning Tool,39 recreation subscale), whereas executive function was associated with adaptive competence (assessed with the Advanced Finances Task41).

However, the quality of this evidence base is limited. For example, 1 cross-sectional study28 found a significant relationship only between delayed verbal memory and the general health perceptions subscale of the SF-36, which is not a measure of psychosocial functioning. Other studies found significant correlations between neurocognitive and functioning assessments that, on subsequent multivariate analyses, were no longer significant. For example, McCall and Dunn29 found several significant correlations between neurocognitive tests of verbal learning and delayed memory and functional measures (IADL and the relation to self and others subscale of the Behavior and Symptom Identification Scale42), but regression analyses showed that the only significant cognition predictor of psychosocial functioning was a global measure (the Mini-Mental Status Examination25).
Table 3. Summary of Studies Exploring Relationships Between Neurocognitive and Psychosocial Assessments

<table>
<thead>
<tr>
<th>Study</th>
<th>N MDD</th>
<th>Healthy Controls</th>
<th>Executive Function</th>
<th>Processing Speed</th>
<th>Psychomotor Speed</th>
<th>Verbal/Visual Memory</th>
<th>Immediate/Delayed Memory</th>
<th>Verbal/Fluency/Language</th>
<th>Visuospatial Abilities</th>
<th>Global Cognition</th>
<th>Activities of Daily Living</th>
<th>Health-Related Quality of Life</th>
<th>General Functioning</th>
<th>Other</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional design</td>
<td></td>
</tr>
<tr>
<td>Baune et al25</td>
<td>70</td>
<td>Yes</td>
<td>X1</td>
<td></td>
</tr>
<tr>
<td>Godard et al26</td>
<td>16</td>
<td>Yes</td>
<td>X2,3,5</td>
<td>X2,3</td>
<td>X3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIFERIFT: work2 interpersonal3 life satisfaction4 subscales and global score5</td>
<td></td>
</tr>
<tr>
<td>Gupta et al27</td>
<td>33</td>
<td>No</td>
<td>X6 X7</td>
<td></td>
<td>Treatment-resistant sample; controlled laboratory tasks of functioning; small sample size; cognitive tests selected for demonstrated sensitivity to impairments in depressed samples</td>
</tr>
<tr>
<td>McCaill and Dunn28</td>
<td>77</td>
<td>No</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSMS (ADL); IADL8; DLRF; RSO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naismith et al29</td>
<td>21</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SF-12 mental subscale PDI: physical disability only6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shimizu et al30</td>
<td>43</td>
<td>Yes</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SF-36: general health perceptions only10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospective design</td>
<td></td>
</tr>
<tr>
<td>Jaeger et al41</td>
<td>48</td>
<td>No</td>
<td>X11</td>
<td></td>
<td>MIF global score11</td>
<td></td>
</tr>
<tr>
<td>W thell et al32</td>
<td>48</td>
<td>No</td>
<td>X12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOFAS12 Employment status</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An X indicates cognitive domains that were assessed in each study as categorized by the authors, whereas an O indicates other possible categorizations of assessed cognitive domains, according to the specific tests used. A shaded cell indicates that performance in that neurocognitive domain was significantly related to a functional outcome, denoted by a superscript number and underlined.

Abbreviations: ADL = Activities of Daily Living; AFT = Advanced Finances Task; BDQ = Brief Disability Questionnaire; DLRF = Daily Living and Role Functioning; IADL = Instrumental Activities of Daily Living; LIFE-RIFT = Longitudinal Interval Follow-Up Evaluation—Range of Impaired Functioning Tool; MIF = Multidimensional Scale of Independent Functioning; PSMS = Personal Self-Maintenance Scale; RSO = Relation to Self and Others; SF-12 = Medical Outcomes Study Health Survey Short-Form, 12 item; SF-36 = Medical Outcomes Study Health Survey Short-Form, 36 item; SOFAS = Social and Occupational Functioning Assessment Scale; SSPA = Social Skills Performance Assessment.
Similarly, Naismith et al found that memory retention significantly correlated with the functional disability subscale of the Brief Disability Questionnaire but, in multivariate analyses, no longer remained a significant predictor. In these analyses, psychomotor speed was a predictor of physical disability but not functional disability.

Prospective studies can provide stronger evidence for a direct relationship between neurocognitive and psychosocial functioning by showing that 1 variable (ie, neurocognitive deficits) at baseline predicts the outcome of another (psychosocial functioning) at follow-up. Only 2 prospective studies examined the relationship between cognition and functioning directly. In 1 study of 48 inpatients with MDD, aspects of executive functioning (ie, cognitive flexibility and error monitoring) and memory predicted scores at 3-month follow-up on the Social and Occupational Functioning Assessment Scale. In the other prospective study, coincidently also of 48 inpatients with MDD, nonverbal reasoning, visual memory, and fine motor dexterity and speed at baseline were correlated with scores from the Multidimensional Scale of Independent Functioning at 6-month follow-up, even after controlling for depression severity.

Two other prospective studies (Table 4) conducted analyses on cognitive and psychosocial functioning separately, and so cannot address the direct relationship between cognition and functioning. One small study (n = 13 outpatients) found that both cognition and psychosocial functioning (as assessed by the Longitudinal Interval Follow-up Evaluation) improved over 12 months, whereas the other (n = 76 depressed persons with various diagnoses of MDD, dysthymia, and mixed anxiety depressive disorder) found that functional outcomes (on a 5-item subscale of the Brief Disability Questionnaire) improved at 3-year follow-up, but the verbal episodic memory of both the still-depressed and recovered groups remained unchanged. The latter findings are limited by the various depression diagnoses (the number of subjects with MDD was not reported) and the limited number of neuropsychological tests.

Because most assessments of functioning consisted of a combination of basic personal, occupational, and social domains, it is difficult to draw conclusions about neurocognitive effects on specific areas of psychosocial functioning. Nevertheless, functioning in areas such as employment and education, recreation, social skills, financial planning, and domestic responsibilities, and quality of life in mental health and perceptions of health, were implicated across studies.

DISCUSSION

An extensive body of research suggests that MDD is associated with neurocognitive deficits; these deficits are likely to contribute to the social and occupational impairments observed in patients diagnosed with depression. We systematically and critically reviewed existing studies on neurocognitive deficits and their impact on psychosocial functioning in adults with MDD. Ultimately, only 10 studies met the inclusion criteria, and all had methodological limitations that temper the findings. Most had small sample sizes, ranging from 13 to 77 participants with MDD. They employed a wide range of neurocognitive test batteries and assessments of psychosocial functioning, several of which may not be optimal for the young- to middle-aged adult samples studied. Studies also varied in their design and analyses (prospective versus cross-sectional, time of data collection in the course of illness, multivariate versus correlational analyses, and comparisons with healthy subjects or normative data). Only 5 studies investigated multivariate models (thus controlling for intercorrelations among variables) of the relationship between cognitive and psychosocial functioning, and only 1 of these did so prospectively.

Notwithstanding these limitations, these studies provide some limited evidence that neurocognitive deficits are significant and clinically important factors related to the quality of life and level of social and occupational functioning of individuals with MDD. All studies that directly assessed the relationship between cognition and functioning found that performance in at least 1 cognitive domain was broadly associated with or predicted a functional outcome.

Several factors may contribute to the inconsistent functional outcomes for specific neurocognitive domains across studies. These include differences in patient...
demographics such as age, education, and socioeconomic status; illness severity (including severity of current symptoms, as well as age at onset, number of episodes, and chronicity); general medical and psychiatric comorbidity; concomitant medications; timeframe for data collection; and, importantly, the reliability, validity, and sensitivity of the assessments of neurocognitive and psychosocial functioning used. It may be especially important to use adequately sensitive and validated assessments of functioning in higher-functioning samples, such as depressed patients who are maintaining stable employment, to ensure that any subtle but important changes in functioning are captured. Indeed, some studies included in this review used assessments of functioning that most likely lack the appropriate sensitivity for a depressed, nongeriatric adult sample. For example, the ADL (including the PSMS) and IADL questionnaires were developed specifically for use in older adults who may be unable to care for themselves due to aging-related physical and mental disabilities, and they assess quite basic aspects of functioning. It is therefore unsurprising that these scales were not associated with neurocognitive functioning in MDD studies.

There are other challenges in assessing mental health–related functional impairments. One important distinction is that between patients’ functioning and patients’ perceptions of their quality of life. Both are important and related outcomes that were included under the umbrella of “psychosocial functioning” in this review. Another important consideration is whether assessments of functioning are subjective (self-report or interview-based, which rely on patients’ perceptions of his or her level of functioning) or more quantifiable, objective, and separate from self-perception (eg, employment status, number of hours scheduled and worked, observation-based assessments, laboratory tasks). Subjective measures of functioning are often simpler, easier, and less time-consuming to use than observation-based and laboratory assessments, but they may be vulnerable to patients’ biases and thus may provide less accurate information about true levels of functioning. On the other hand, objective measures of functioning may also be influenced by external factors, such as patients’ degree of social support; the nature of their work; educational, social, and domestic responsibilities; and the institutional supports (such as sick leave, disability, and unemployment insurance) available to them. Measures that take into account contextual factors might help avoid these pitfalls. For example, the Multidimensional Scale of Independent Functioning assesses not only patients’ level of role performance but also their role position and the presence and degree of role support, allowing for distinctions between, for example, patients who are higher functioning with much social or institutional support and those who are lower functioning but independent. Finally, laboratory tasks are another possible solution, both to subjectivity in self-report and interview-based assessments and to the influence of external factors in objective measures of functioning. However, laboratory measures must demonstrate ecological validity or risk similarly misrepresenting patients’ true levels of functioning. Ultimately, any assessment modality will have both strengths and weaknesses that are important to consider when selecting measures and interpreting results.

Some research has suggested that measurable neurocognitive impairments are present only in a minority of patients with depression, albeit a sizable minority. It may be fruitful to examine more specifically the impact of cognitive impairment on psychosocial functioning in this subset of depressed patients. Interestingly, recent research has suggested that neurocognitive functioning, particularly executive function, in patients with major mood disorders predicts clinical outcomes and prognosis, perhaps even more so than the specific psychiatric diagnosis itself. Thus, neurocognitive impairments are emerging as relevant both for traditional clinical outcomes such as symptom remission and for functional outcomes.

Similarly, higher severity of depressive symptoms is generally associated with both greater cognitive impairments and poorer psychosocial functioning. However, it is unclear to what degree cognitive deficits mediate the relationship between depressive illness and psychosocial outcomes within varying levels of symptom severity. For example, in milder depression, persistent cognitive deficits may be responsible for a greater proportion of psychosocial impairment than in severe depression, in which other symptoms (eg, lack of motivation, hopelessness, somatic symptoms) may be the more significant contributors to functional disability. To our knowledge, no research has yet examined the mediating role of both cognitive deficits and depression severity on psychosocial outcomes.

To date, there are very few published studies that have examined the relationship between cognitive, social, and occupational functioning, and these studies have some significant methodological limitations. Given these limitations, it is difficult to draw definitive conclusions about the relationship(s) between neurocognitive impairment, psychosocial functioning, and other factors in MDD. Further research is clearly necessary and warranted. Future studies should include larger and more homogeneous samples, prospective study designs, and multivariate statistical methods. They should also employ more extensive and higher quality assessments of psychosocial and occupational functioning, specifically, those that have been developed and validated for use in depressed and/or psychiatric populations (for examples of some available assessments, see recent reviews). Similarly, the neuropsychological tests employed should have demonstrated sensitivity to detect cognitive deficits in depressed populations. Finally, because cognitive impairment may be present only in a minority of depressed patients and may be especially difficult to detect in educated and/or high-functioning depressed samples (such as those with stable employment), it is important to include a matched, healthy subject comparison sample. If normative data are used, it is important to try to match, control, or adjust for important variables such as education and level of intelligence. Ultimately, future clinical research should also address interventions to improve neurocognitive functioning.
in individuals with MDD, with the ultimate objective of optimizing psychosocial functioning.

Author affiliations: Mood and Anxiety Disorders Program, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada (all authors); Department of Physical Medicine and Rehabilitation, Harvard Medical School (Dr Iverson); and Red Sox Foundation and Massachusetts General Hospital Home Base Program, Boston (Dr Iverson).

Potential conflicts of interest: Dr Iverson has received research support or honoraria from Alcohol Beverage Medical Research Council, AstraZeneca Canada, Canadian Institutes of Health Research, CNS Vital Signs, ImPACT Applications, Lundbeck Canada, Pfizer Canada, Psychological Assessment Resources (PAR), and Rehabilitation Research and Development (RR&D) Service of the US Department of Veterans Affairs. Dr Lam has received an advisory board member for and received honoraria and grant/research support from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Johnson & Johnson, Novartis, Pfizer, Abbott, Servier, and Wyeth; has been an advisory board member for Forest; and has received grant/research support from the Stanley Foundation, the National Alliance for Research on Schizophrenia and Depression (NARSAD), the Canadian Institutes of Health Research, and the Canadian Psychiatric Foundation. Dr Lam has received ad hoc speaker honoraria from AstraZeneca, Canadian Psychiatric Association, Canadian Network for Mood and Anxiety Treatments, Lundbeck, Lundbeck Institute, Mochida, Pfizer, and Servier; has served on ad hoc consulting/advisory boards of AstraZeneca, Bristol-Myers Squibb, Canadian Network for Mood and Anxiety Treatments, Eli Lilly, Lifebook, Lundbeck, Pfizer, and Takeda; has received research funds (through University of British Columbia) from Bristol-Myers Squibh, Canadian Institutes of Health Research, Canadian Psychiatric Association Foundation, Lifebook, Lundbeck, Merck, Pfizer, St Jude Medical, and UBC Institute of Mental Health/Coast Capital Savings; has received patents/copyrights from Lam Employment Absence and Productivity Scale (LEAPS); and has received book royalties from Cambridge University Press and Oxford University Press. Ms Evans has no disclosures to report.

Funding/support: No direct funding was sought or received for this research.

REFERENCES

